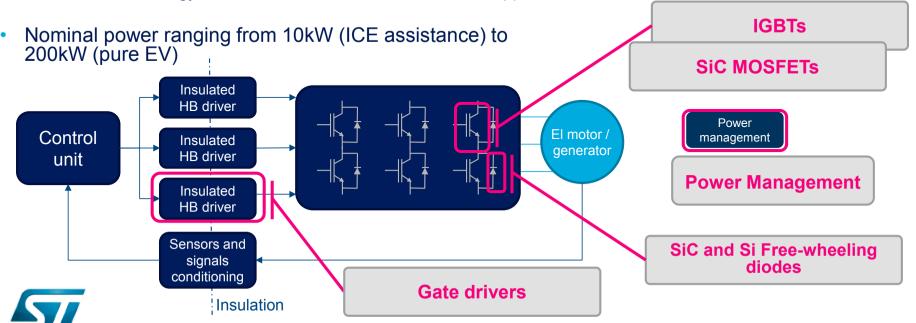

Power Electronics for Electric Vehicles

Traction Inverter

On-Board Charger

Auxiliary DC/DC Converter


Power Technology

Traction Inverter

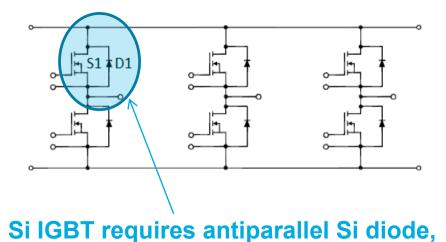
SiC MOSFETs can replace IGBTs with a smaller footprint, reduced losses and greater battery autonomy

- Usually 3-phase permanent magnet motors are used for traction
- Operating voltage from 300V to 750V
- Inverter must be bi-directional
 - · Feeds the electric motor when driving the wheels
 - Streams energy back on HV Bus when vehicle brakes applied

SiC MOSFET Based 80kW Traction Inverter

SiC MOSFETs provide

- More than 50% module/package size reduction
- ✓ Much smaller semiconductor area → ultra compact solution
- >1% efficiency improvement (75% lower loss)
- ✓ Much lower losses at low-medium load → longer autonomy
- 80% cooling system downsize
- ✓ Lower losses at full load → smaller cooling system
- ✓ Lower Delta (T_i-T_{fluid}) in the whole load range → best reliability



Power Loss Estimation for 80kW EV Traction Inverter

Switch (S1+D1) implementation

- Topology: Three phase inverter
- Synchronous rectification (SiC version)
- DC-link voltage: 400V_{dc}
- Current 480Arms (peak) 230Arms (nom)
- Switching frequency: 16kHz
- V_{gs} =+20V/-5V for SiC, V_{ge} =±15V for IGBT
- Cos(phi): 0.8
- Modulation index (MI): 1
- Cooling fluid temperature: 85°C
- $R_{thJ-C(IGBT-die)} = 0.4$ °C/W; $R_{thJ-C(SiC-die)} = 1.25$ °C/W
- $T_i \le 80\% * T_{imax} ° C$ at any condition

SiC MOSFETs do not

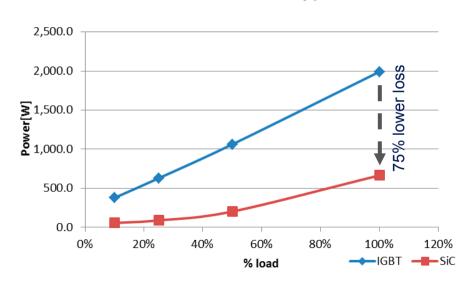
4 x 650V,200A IGBTs + 4 x 650V,200A Si diodes vs.
7 x 650V, 100A SiC MOSFETs SCTx100N65G2

Power Loss at Peak Condition (480Arms, 10sec)

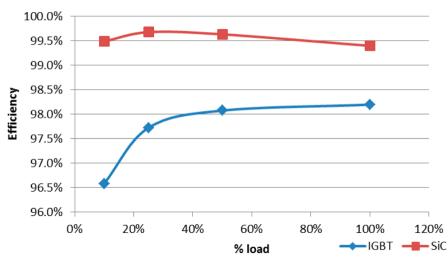
SiC MOSFETs run at higher junction temperatures in spite of lower losses

This is due to the exceptional SiC R_{DSON} x Area FOM

Loss Energy	Si-IGBTs + Si-diodes Solution	Full-SiC Solution	
Total chip-area	400 mm² (IGBT) + 200mm² (diode)	140 mm²	4.3x lower
Conduction losses* (W)	244.1	377.9	
Turn-on losses* (W)	105.1	24.1	> 4x lower
Turn-off losses* (W)	228.4	32.7	> 7x lower
Diode's conduction losses* (W)	45.9	Negligible	
Diode's Q _{rr} losses* (W)	99.5	Negligible	
(S1+D1) Total losses* (W)	723	435	← 40% lower
Junction Temperature (°C)	142.8	162.6	← T _J ~ 80% Tjn



SiC MOSFET Enables Lower Power Dissipation f_{sw}=16kHz, Operating phase current up to 230A_{rms} and Higher Efficiency

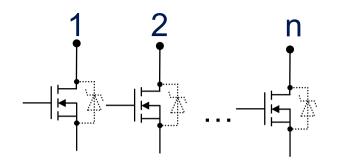

Lower losses mean smaller cooling system and longer battery autonomy

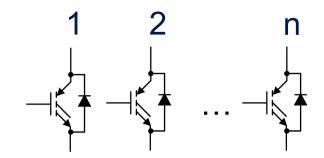
Inverter losses vs %load

SiC shows much lower losses in the whole load range

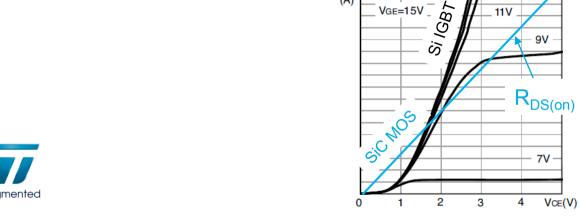
Inverter efficiency vs %load

* Simulated efficiency takes into account only the losses due to the switches and diodes forming the bridge inverter


SiC offers 1% higher efficiency or more over the whole load range!



SiC MOSFETs have the Lowest Conduction Losses

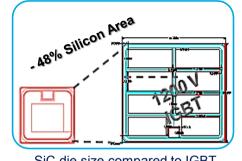

The lowest possible conduction losses can only be achieved with SiC MOSFETs

When "n" MOSFETs are paralleled the total R_{DS(on)} must be divided by "n" allowing ideally zero conduction losses

When "n" IGBTs are paralleled the $V_{ce(sat)}$ doesn't decrease linearly, the minimum achievable on-state voltage drop is about 0.8-1 V

Hard-Switched Power Losses

SiC MOSFET vs. Si IGBT


SiC MOSFET vs. trench gate field-stop IGBT

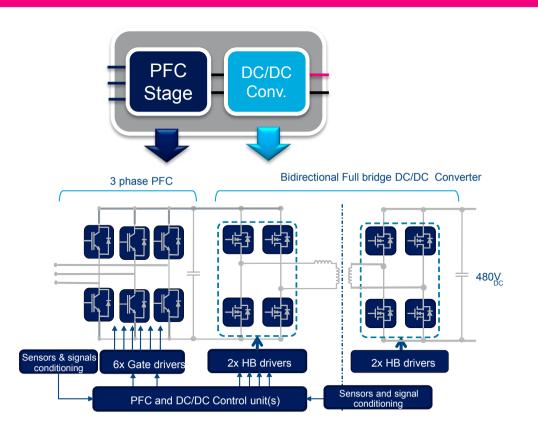
Parameters & Conditions	Die size (Normalized)	V _{on} typ. (V) @ 25°C, 20A	V _{on} typ. (V) @ 150°C, 20A	E _{on} (μJ) @ 20A, 800V 25°C / 150°C	E _{off} (μ J) @ 20A, 800V 25°C / 150°C	E _{off} 25°C / 150°C difference (%)
SiC MOSFET	0.52	1.6	1.8	500 / 450 [*]	350 / 400	+15% from 25°C to 150°C
IGBT	1.00	1.95	2.2	800 / 1300**	800/ 1900	+140% from 25°C to 150°C

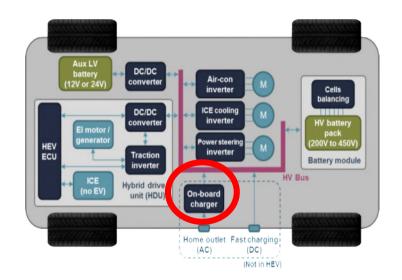
^{*} Including SiC intrinsic body diode Q_{rr} ** Including the Si IGBT copack diode Q_{rr}

SiC MOSFET

- Data measured on SiC MOSFET engineering samples;
- SiC MOSFET device : SCT30N120, 1200V, 34A (@100°C), 80mΩ, N-channel
- Si IGBT device: 25A(@100°C) 1200V ST trench gate field-stop IGBT (T_{i-max}=175°C)
- SiC switching power losses are considerably lower than the IGBT ones
- At high temperature, the gap between SiC and IGBT is insurmountable

SiC die size compared to IGBT

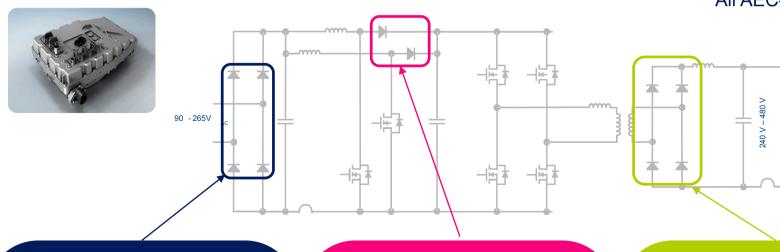

➤ SiC MOSFET is the optimal fit for High Power, High Frequency and High Temperature applications



On-Board Charger

SiC MOSFETs offer more efficient solutions at higher switching frequency and smaller size

Single-phase architecture → SiC MOS 650V


Three-phase architecture → mainly SiC MOS 1200V

Power Rectifiers for OBC

All AEC-Q101 qualified PPAP capable

Input bridge 1000V / 1200V rectifiers and thyristors

Auto-grade rectifiers:

1000V	1000V low-	1200V
diodes	V _F diode	diodes
STTH6010WY STTH3010WY STTH1210WY	STTH60L10WY High efficiency	STTH1512WY

Auto-grade thyristor:

Hi temperature1200V SCR
TN5050H-12WY
High
efficiency

Function: inrush protection in mixedbridge topology + disconnection of the bridge in idle mode

PFC 600V / 650V rectifiers

Auto-grade SiC Schottky rectifiers:

6A	to 20A, 6	50V SiC

STPSC6C065DY STPSC10H065DY STPSC12C065DY STPSC20H065CTY STPSC20H065CWY

High efficiency

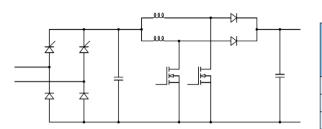
Auto-grade ultrafast rectifiers:

5A & 8A, 600V	30A, 600V	60A, 600V
STTH5R06-Y STTH8R06-Y	Low Q _{RR} STTH30ST06-Y Low V _F STTH30L06-Y	Low Q _{RR} Soft recovery STTH60T06-Y

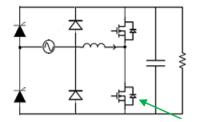
Secondary Rectification 600V rectifiers

Auto-grade ultrafast rectifiers:

5A & 8A, 600V	30A, 600V	60A, 600V
STTH5R06-Y STTH8R06-Y	Low Q _{RR} STTH30ST06-Y Low V _F STTH30L06-Y	Low Q _{RR} Soft recovery STTH60T06-Y High efficiency



SiC MOSFET improves PFC Boost Topologies


PFC Boost Topologies

					P _{turn-off,diode}	Each			
	P _{cond-switch} [W]	P _{turn-off} [W]	P _{turn-on} [W]	P _{cond,diode} [W]	[w]	P _{TN5050H-12W}			
Cases	(Each Switch)	(Each Switch)	(Each Switch)	(Each Diode)	(Each Diode)	[W]	P _{TOT(BOOST)} [W]	$P_{TOT(SiC)}[W]$	Efficiency
120VAC, 16Arms	1.13	3.67	11.29	3.59	TBD	7.20	68.13	19.67	96.452%
240VAC, 27Arms	1.40	4.51	12.42	16.11	TBD	13.15	121.50	34.44	98.125%
220VAC, 32Arms	2.39	5.03	12.97	19.48	TBD	16.13	144.27	39.87	97.951%

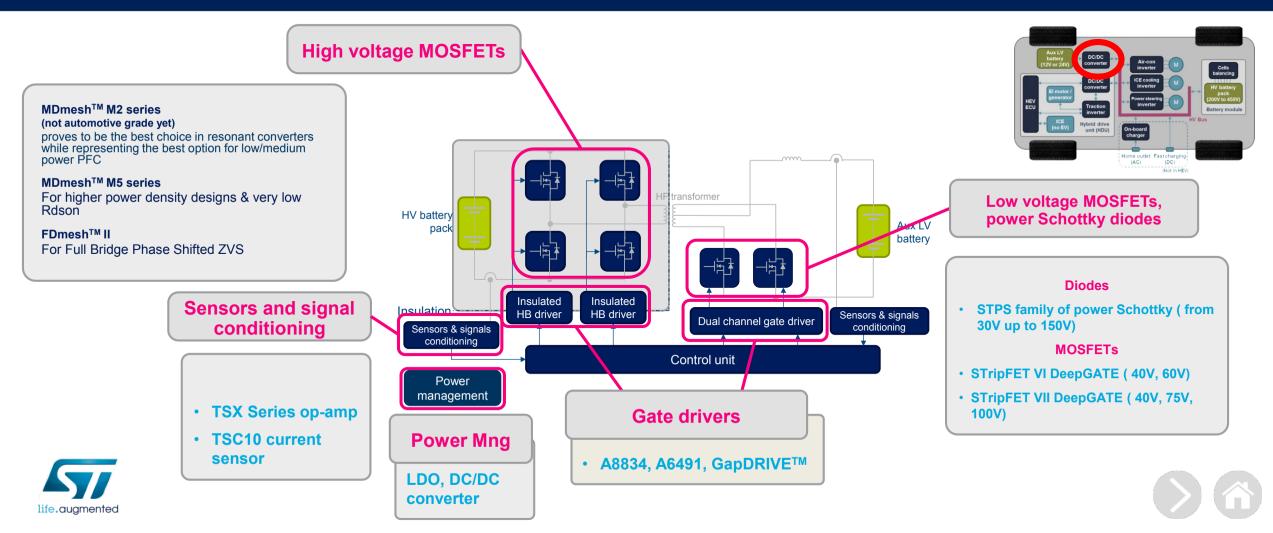
Interleaved PFC boost, single phase

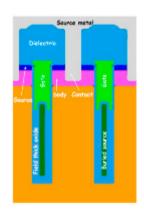
VDC(OUT)=400V, Switch: SiC MOSFET, 650V, 25mOhm(25C,typ), Diode: 600V SiC Schottky, 20A (STPSC20H065C-Y), T_J=125C

Cases	P _{cond-switch} [W] (Each Switch)	P _{turn-off} [W] (Each Switch)	P _{turn-on} [W] (Each Switch)	P _{cond,sync-rec} [W] (Each Switch)	P _{Qrr,body_diode} [W] (Each Switch)	Each P _{TN5050H-12W} [W]	P _{TOT(BOOST)} [W]	P _{TOT(SiC)} [W]	Efficiency
120VAC, 16Arms	2.25	2.51	6.48	1.34	TBD	7.20	39.56	12.59	97.939%
240VAC, 27Arms	2.80	4.17	7.82	7.26	TBD	13.15	70.40	22.05	98.914%
220VAC, 32Arms	4.78	5.21	8.49	9.30	TBD	16.13	87.80	27.77	98.753%

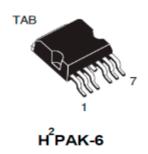
Totem-pole semi-bridgeless PFC boost, single phase

VDC(OUT)=400V, Switch: SiC MOSFET, 650V, 25mOhm(25C,typ), T₁=125C




Auxiliary DC/DC converter

ST can cover the whole system with state-of-the-art technologies including SiC and Isolated GAP drivers

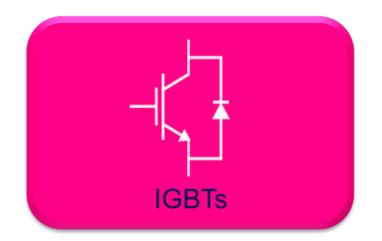


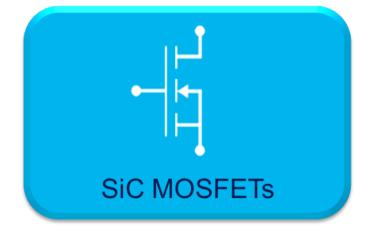
New 80/100V MOSFET Series: STripFET F7

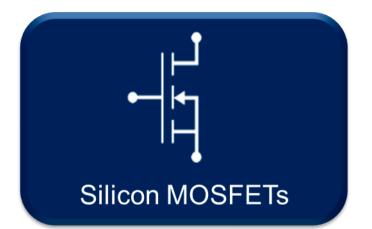
ST cover the complete system with state-of-the-art technologies including SiC and Isolated GAP drivers

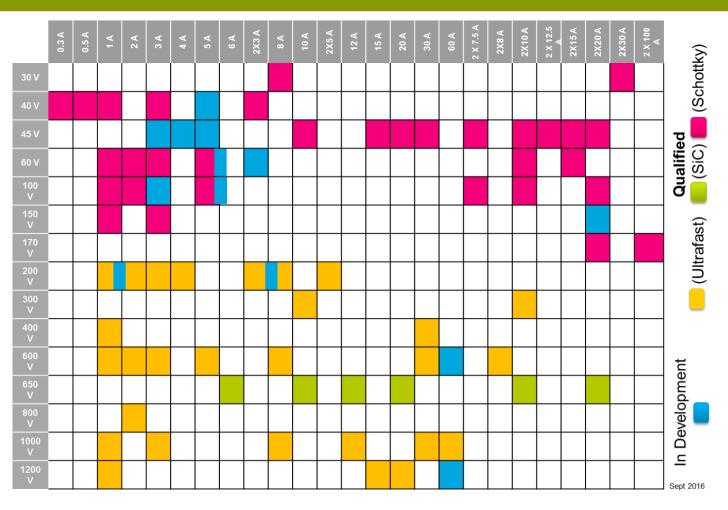
- STH315N10F7-2/ STH315N10F7-6
- Rdson 1.9 mΩ typ
- VDS = 100 V
- ID = 180 A
- 100% avalanche tested
- Tjmax 175° C
- Available in H²PAK-2/6
- AEC Q101 qualified in KGD die form

Already used for 48V DC/DC converters by key customer




Power Technology


ST offers both silicon and silicon carbide discrete power components



Automotive Grade Rectifier Portfolio

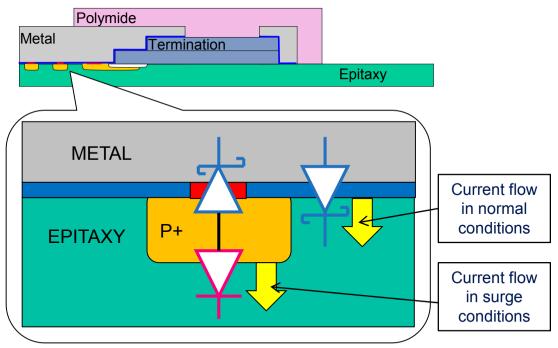
Ultrafast, SiC and Schottky

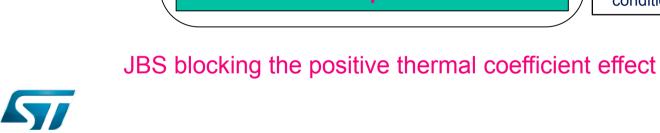
Automotive Grade SiC Rectifier

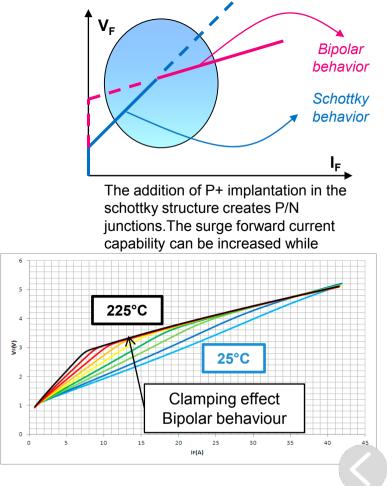
SiC Schottky

Part number		(per	/] max diode) DI ₀		տ [A] diode)	I_R [μΑ] (per diode)	Q _{cj} [nC] (per diode)		P	ack	ages	6				
Fattiumpei i _{F(AV)}	I _{F(AV)}	25°C	150°C	10μs 25°C	10ms 125°C	Vr=650V 150°C	V _R =400V	TO-220AC	TO-220AB	DO-220I	DO-247	TO-247	D2PAK			
SiC New blank series 650V																
STPSC6C065-Y	6 A			375	43	250	15.2									
STPSC10H065-Y	10 A	1.75 2.5	2.5	470	80	425	28.5									
STPSC12H065-Y	12 A							400	90	500	36					
STPSC12065-Y	12 A	1.45	1.65	220	40	1000	12									
STPSC20H065C-Y	2 x 10A	1.75	2.5	470	80	425	28.5									
STPSC20065-Y	20 A	1.45	1.65	300	60	2000	30									
STPSC40065CWY	2x20A	1.45	1.05	300	60	2000	30									

		V _E [\	/] max			Ι_R [μΑ] max	Q _{cj}	Pac	kage
Part number				I _{FSI}	_M [A]	iβ [h∖√] IIIax	[nC] typ	0	
rait iluilibei	F(AV)	¹F	= I ₀					TO-220	D²PAK
		25°C	150°C	10µs 25°С	10ms 25°C	Vr=1200V 150°C	V _R =800V	10	D ²
			Si	C 120	00V				
STPSC10H12-Y	10 A			220	55	400	60		
STPSC15H12-Y	15 A	1.5	2.25	330	80	600	70		
STPSC20H12-Y	20 A			440	110	800	95		

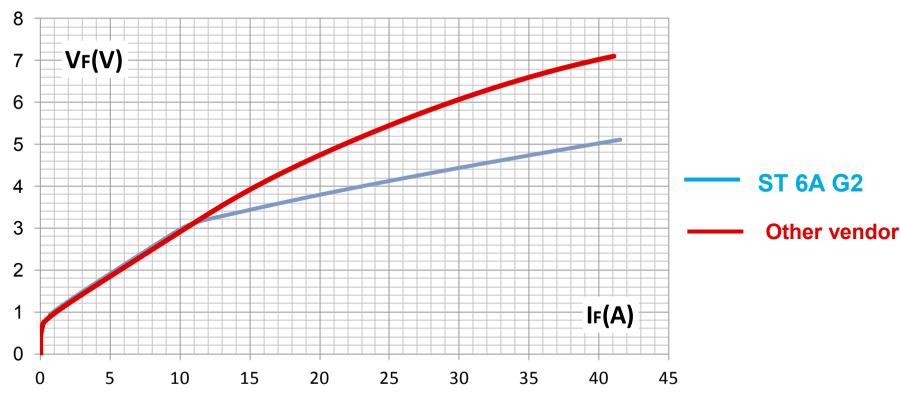





ST SiC Schottky Rectifiers

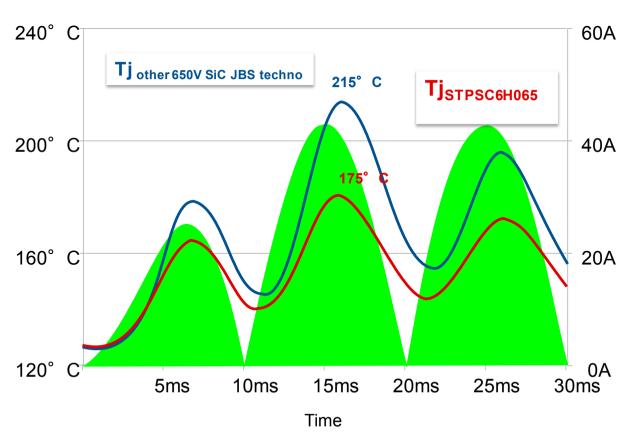
Silicon Carbide Schottky Rectifiers

SiC 650 V G2 and 1200 V technology: using JBS (Junction-Barrier Schottky)



ST SiC Schottky Rectifiers have Superior Forward Surge Capabilities

The ST advantage





ST SiC Schottky Rectifiers exhibit Smaller Temperature Swing

Comparing to other vendor (using electro-thermal model)

Better clamping effect and lower V_F permits to significantly reduce the junction temperature during transient phases in the application.

ST SiC Rectifier Benefits

The ST SiC advantage

Low forward conduction losses and low switching losses

High efficiency → high added value of the power converter Possibility to reduce size and cost of the power converter

High power integration (dual-diodes)

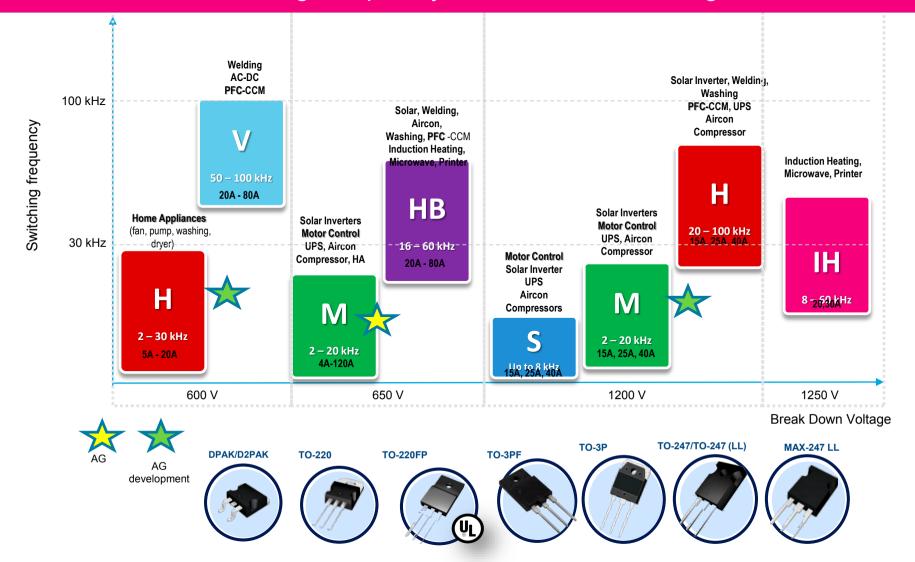
BOM cost reduction
High added value of the power converter
Gain on PCB and mounting cost

Soft switching behaviour

Low EMC impact → easy design/certification → Good time to market

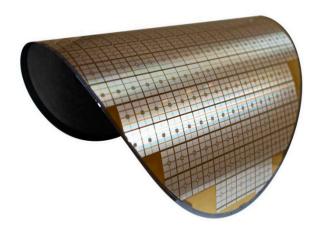
High forward surge capability (G2)

High robustness → Good reliability of the power converter Easy design → Good time to market Possibility to reduce diode caliber → BOM cost reduction



Silicon IGBT Technologies

Switching Frequency vs. Break Down Voltage



650V "M" Series IGBTs

Trench field stop technology

Thin IGBT wafer technology at 650 V for a more rugged, efficient and reliable power drive system. For EV/HEV motor control

Key Features

- A wide Product Range up to 120A
- 175°C max junction temperature
- Very Low VCE(sat) (1.55V typ) at ICN 100°C
- Self ruggedness against short circuits events
- Low switching-off losses
- Safe paralleling
- Optimized co-packed free wheeling diode option
- AEC-Q101 qualified for die form in T&R KGD

Auto Grade Thyristors

In-rush current limiting SCR for OBC

Design Value

- AEC-Q101 PPAP Available on request
- High switching life expectancy
- Enable system to resist 6kV surge
- High speed power up / line drop recovery

Features	TN5050H						
V _{DRM} / V _{RRM}	1,200 V ov	er T _J range					
Max T _J	-40°C to +150°C						
V _{DSM} / V _{RSM}	1300 V	1400 V					
I _{TRMS} (T _C =125°C)	80 A	30 A					
I _{TSM} (10ms,25°C)	580 A	300 A					
V _{TO} (150°C)	0.88V	0.88V					
R _D (150°C)	6 m Ω	14 m Ω					
I _{GT} (25°C)	10 to 50 mA 10 to 50 mA						
dV/dt (800V-150°C)	1 kV/µs						

A better way to turn on your system

Existing Isolation Technologies

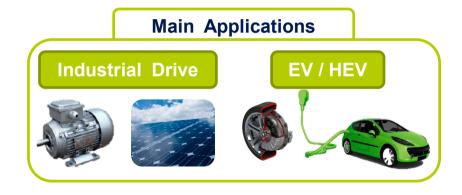
Isolation technologies

Polymeric/Ceramic Isolation Thick Oxide Isolation Isolation: film of polymer (or other dielectric such as DAF, glass). Isolation: Silicon Oxide grown on top of active silicon area (standard Custom assembly process required. silicon IC technologies) **RF Couplers Optocouplers** capacitive coupling magnetic coupling Good parametric stability over time Good parametric stability over time · Good parametric stability over time Dielectric ageing: parametric instability over time Good CMTI immunity Limited CMTI immunity Very good CMTI immunity · Limited CMTI immunity Limited communication speed Sensitive to electric fields Good immunity to magnetic and electric fields · Assembly complexity

gapDRIVETM: Galvanically Isolated Gate Driver

Galvanically Isolated Gate Driver technology

- Automotive (Hybrid\Electric Vehicles)
 - Motor Control
 - DC/DC Converters
 - Battery Chargers



- 600/1200 V Inverters
- · Automation, Motion Control
- Welding
- Power Conversion
 - Solar Inverters
 - UPS Systems
 - AC/DC, DC/DC Converters
 - Windmills
- Home/Consumer
 - Induction Cooking
 - White goods

- CONTROL: A SPI interface to enable, disable and configure several features → Optimize your driving conditions.
- PROTECTION: Several features to mange anomalous conditions (OCP, DESAT, 2LTO, VCE_Clamp) and to prevent them (UVLO, OVLO, ASC, MillerCLAMP)
- **DIAGNOSTIC:** The SPI interface allows access to registers containing information about the status of the device.

STGAP1S - Main Features

Galvanically Isolated Gate Driver technology

AEC-Q100 grade 1

Wide operating range (-40°C -125°C)

SPI Interface

Parameters programming and diagnostics Daisy chaining possibility

Advanced features

5A Active Miller clamp, Desaturation, 2-level turn-off, VCEClamp, ASC

Short propagation delay

(100 ns typ.; 130 ns max over temperature) 5 A sink/source current

Fully protected – System safety

UVLO, OVLO, Over-Current, INFilter, Thermal Warning and Shut-Down

High Voltage Rail up to 1.5 kV

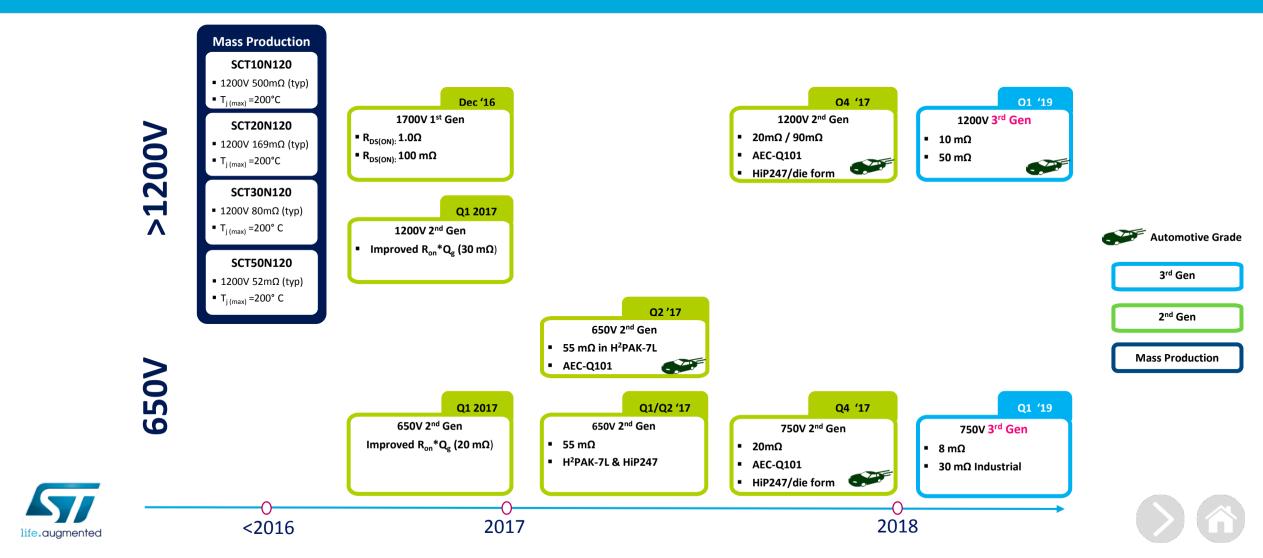
Positive drive voltage up to 36 V Negative Gate drive ability (-10 V)

STGAP1S Isolation Characteristics

Conforms with IEC60664-1, IEC60747-5-2 and UL1577 standards

Parameter	Symbol	Test Conditions	Characteristic	Unit
Maximum Working isolation Voltage	V_{IORM}		1500	V_{PEAK}
Input to Output tost voltage	V	Method a, Type and sample test $V_{PR} = V_{IORM} \times 1.6$, $t_m = 10 \text{ s}$ Partial discharge < 5 pC	2400	V_{PEAK}
Input to Output test voltage	V_{PR}	Method b, 100% Production test $V_{PR} = V_{IORM} \times 1.875$, $t_m = 1 \text{ s}$ Partial discharge < 5 pC	2815	V_{PEAK}
Transient Overvoltage	V_{IOTM}	Type test; t _{ini} = 60 s	4000	V_{PEAK}
Maximum Surge isolation Voltage	V_{IOSM}	Type test;	4000	V_{PEAK}
Isolation Resistance	R _{IO}	V_{IO} = 500 V at T_{S}	> 10 ⁹	Ω
Isolation Withstand Voltage	V_{ISO}	1 min. (type test)	2500\3536	$V_{\text{rms} \setminus \text{PEAK}}$
Isolation Test Voltage	$V_{ISO,test}$	1 sec. (100% production)	3000\4242	$V_{\text{rms} \setminus \text{PEAK}}$

Parameter	Symbol	Value	Unit	Conditions
Creepage (Minimum External Tracking)	CPG	8	mm	Measured from input terminals to output terminals, shortest distance path along body
Comparative Tracking Index (Tracking Resistance)	CTI	≥ 400		DIN IEC 112/VDE 0303 Part 1
Isolation group		II		Material Group (DIN VDE 0110, 1/89, Table1)



SiC MOSFET Technology Roadmap

Conforms with IEC60664-1, IEC60747-5-2 and UL1577 standards

Silicon-Carbide MOSFETs

Key Benefits

Extremely low Energy Losses and Ultra-Low $R_{DS(on)}$ especially at very high T_i

Higher operating frequency for smaller and lighter systems

Good Thermal Performance

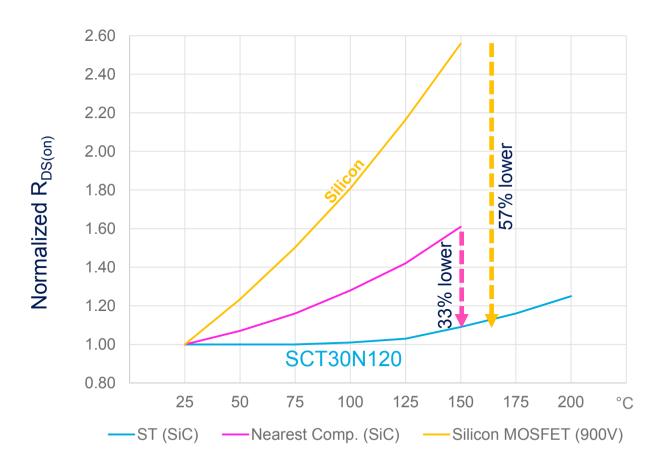
High operating temperature ($T_{jmax} = 200$ °C) Reduced cooling requirements & heat-sink, Increased lifetime

Easy to Drive

Fully compatible with standard Gate Drivers

Very fast and robust intrinsic body diode

More compact Inverter



On-Resistance Versus Temperature

ST is the only supplier to guarantee max Tj as high as 200°C in plastic package

Wide Bandgap Materials

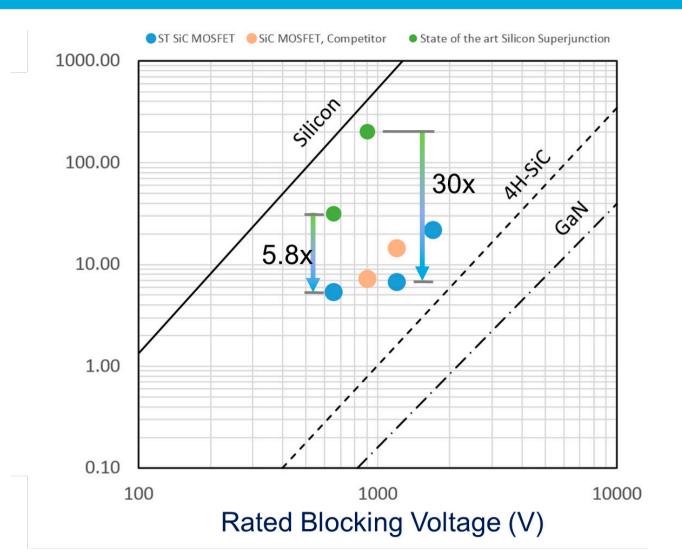
Higher switching frequency

Lower switching losses

SiC represents a radical innovation for power electronics

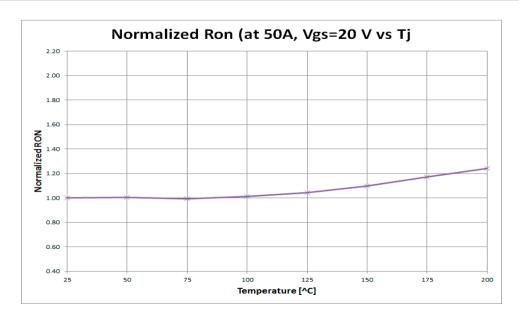
	Si	GaN	4H-SiC
E _g (eV) – Band gap	1.1	3.4	3.3
V_s (cm/s) – Electron saturation velocity	1x10 ⁷	2.2x10 ⁷	2x10 ⁷
ε _r – dielectric constant	11.8	10	9.7
E _c (V/cm) – Critical electric field	3x10 ⁵	2.2x10 ⁶	2.5x10 ⁶
k (W/cm K) thermal conductivity	1.5	1.7	5

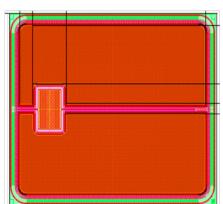
E _c	low on resistance	V _s
E_g	low leakage, high Tj	
k	Operation > 200 °C	
	Reduced Cooling Requireme	nts



MOSFET RDS(on) Figure of Merit at TJ=150C

SiC MOSFETs are not all the same





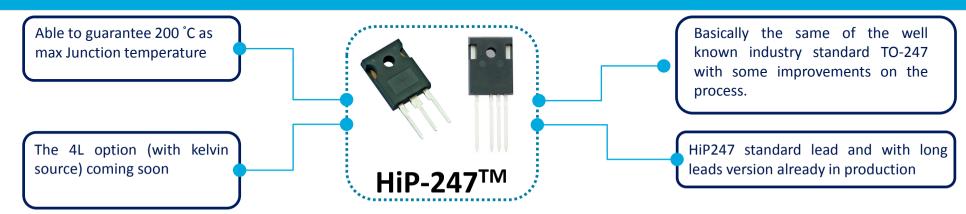
ST 650V 2nd Gen SiC MOSFETs

SCTW100N65G2AG – 2nd Generation

SCTW100N65G2AG

- R_{DS(on)} (typ @25°C) : 20 mOhm
- R_{DS(on)} (typ @200°C) : 23 mOhm
- Q_a (typ) : 215 nC
- Package : HiP247[™]
 - ST SiC MOSFET shows lowest Ron increase at high temperatures
 - ST is the only supplier to guarantee max Tj as high as 200°C
 - Gate driving voltage = 20V

- Full Maturity: July 2016 (Industrial Grade)
- Full Maturity: H1 2017 (Automotive Grade)



Silicon Carbide MOSFET Packages

Through hole proposal

SMD

HV Silicon Power MOSFET Technologies

MDmesh TM M5-Series

MDmesh TM M2-Series

SuperMESH TM K5-Series

MDmesh TM DM2-Series

The leading technology for hard-switching topologies

Key Features

- Industry's lowest R_{DS}(on) in the Market
- High switching speed

Benefits

application

final system

highest efficiency in the

Smaller form factor of

Especially targeted for

hard switching (PFC,

Boost, TTF, Flyback)

550 / 650V classes

- through optimized (Qg) (Ciss, Coss)
- Especially targeted for HB LLC, TTF, Flyback..)

The best fit for resonant / LLC topologies

Kev Features

- Up to 30% lower Qa (equivalent die size)
- Optimized Coss profile
- 400 / 500/ 600 / 650V classes

Benefits

- Reduced switching losses
- Enhanced immunity vs ESD & Vgs spikes in the application

State-of-the-arte in the VHV (Verv-High-Voltage) Class

Kev Features

- Extremely good RDS(on) at very high BVDSS
- High switching speed
- 800 / 850 / 950V classes available now
- 1050 / 1.2k / 1.5kV classes in development

Benefits

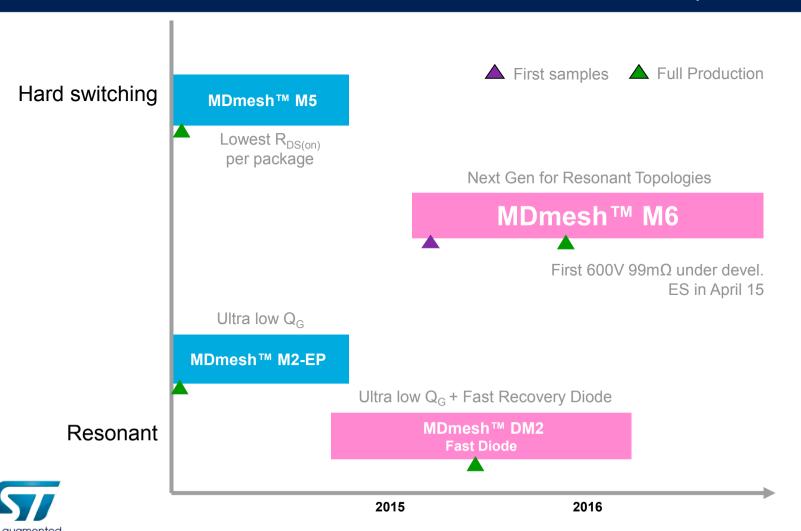
- High efficiency with lower design complexity
- Especially targeted for flyback LED topologies and high voltage range in the application

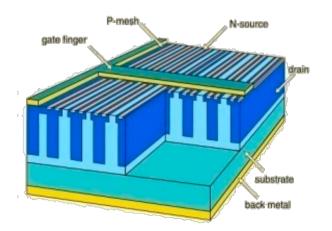
The best fit for F/B ZVS topologies

Kev Features

- Integrated fast body diode
- Softer commutation behavior
- Back-to-Back G-S zener protected
- 500 / 600 / 650V classes

Benefits


- Reduced switching losses through optimized (Qg) (Ciss. Coss)
- High peak diode dV/dt capabilities
- Best use in Full Bridge ZVS



Silicon: MDmesh™ 600-650V SJ Technologies

Short Term Roadmap

LV Silicon Power MOSFET Technologies

Mass Production STripFET F7 [100V] Low on-state resistance High current capability Extremely low thermal resistance Reduced EMI for motor STripFET F6/F7 Low on-state resistance High current capability Extremely low thermal resistance STripFET F7 [40V] Reduced EMI for motor Low on-state resistance SOA/Rdson balance ESD and EMI best in STripFET H7 STripFET H6 Low on-state resistance Schottky diode embedded High quality & reliability Low on-state resistance High quality & reliability Q3 [150V]

STripFET F7

- Low on-state resistance
- · High current capability
- Extremely low Rth
- · High quality & reliability

Q

STripFET F7

[120V]

- Low on-state resistance
- · High current capability
- Extremely lowt Rth
- · High quality & reliability

Q4

STripFET F7 LL [40-45V]

- Low on-state resistance
- Extremely low thermal resistance
- High quality & reliability

STripFET F8 [40-45V]

- · Very low on-state resistance
- Extremely low FoM
- · High quality & reliability

Jan'17

STripFET F8 [150V]

- Very low on-state resistance
- Extremely low FoM
- High quality & reliability

Jan'17

STripFET F8 [100V]

- · Very low on-state resistance
- Extremely low FoM
- · High quality & reliability

Q2'17

STripFET F8 [80V]

- Very low on-state resistance
- Extremely low FoM
- · High quality & reliability

Q2'17

STripFET H8 [30V]

- Very low on-state resistance
- Extremely low FoM
- High quality & reliability

Q2'17

STripFET H8 [25V]

- · Very low on-state resistance
- Extremely low FoM
- High quality & reliability

Automotive Grade

Mass Production

Development

2015

2016 2017

